
GEANT4 Hadronic Cross  
Section Optimizations

Robert Fowler and Paul Ruth
RENCI / UNC Chapel Hill

Pedro Diniz
ISI / USC

Background CrossSection Calculation

•  Hadronic CrossSections
– ~10% of total wall clock time*
– Deep call chain with no hot spots

•  Reduce call chain length
•  Reduce time spent in calculation

*51	
 real	
 events	
 simulated	
 in	
 ~2	
 hours	

(provided	
 by	
 Soon)	

Cross Section Usage

•  Cross section calculation is used to:
–  Determine (probabilistically) whether an interaction

occurs in traversing a particular geometric volume.
–  Then determine reaction and outcomes.

•  CrossSectionDataStore instances created for 65
different processes.
–  Each of these uses different models for different energy

domains, particles, materials.
–  Data is (usually) represented in sub-classes of

G4PhysicsVector.
•  We have been working on increasing the

performance of the CrossSection calculations.

Two strategies

•  Improved caching of CrossSection results
–  1 cache entry per triple (process/particle/material)
– Completed (In the pipeline toward production code)

•  Surrogate model for CrossSection calculations
– Prototype completed
–  Initial results are promising

4

Caching CrossSection Results

•  Currently, there is a 1-entry cache per process for XC calculations.
•  Observation

–  There is an interleaving of recent calls to GetCrossSection with the same
sets of particle, material, process, and energy.

–  Results in same cross section value
–  True even though energy is a double! (The physics is causing this.)

•  Optimization
–  Expanded cache recent the most recent cross section for particle, material,

process triple.
•  Measurements

–  17% of calls would benefit from this cache
–  29% of GetCrossSection cycles are from these calls.
–  ~18k triples total
–  ~3k triples would benefit

5

Caching CrossSection Results

•  Implementation
–  Hashtable per process (i.e. per CrossSectionDataStore)

•  std::unordered_map
–  One cache entry for each particle/material pair

•  Key
–  material
–  particle definition

•  Value
–  particle energy
–  cross section (including xsecelm)

6

G4double G4CrossSectionDataStore::GetCrossSection(part,mat){
 ...

entry = process_cache_map[(part,mat)];
 if(entry->energy == part->GetKineticEnergy()){

 xsecelm = entry->xsecelm;
 crossSection = entry->crossSection;

} else
 //Calculate CrossSection the regular way (including xsecelm)
 ...
 entry->xsecelm = xsecelm;
 entry->crossSection = crossSection;

 }
return crossSection;

}

Modified CrossSection Calculation

Caching CrossSection Results

•  Performance increase
–  1.8% reduction in wall clock time (51 real events simulated over 2+ hours)

•  Presented at Hadronic working group
–  What is the state of this being put in the production code?

8

Surrogate Model: XS Usage

In the Hadronic section of the code:
•  Particle/Material/Process Triples
–  50% of cycles in ~10 triples
–  90% of cycles in ~85 triples
– Total ~18k triples

•  Implementing for tens of triples can utilize fast
path for nearly all of the calls.

Surrogate Model

•  The cross section of an interaction between a particle
and a complex material is (re-computed) on each call.
–  Look up each isotope. Use element and isotope abundance

tables to weight the result.
•  Typical materials

–  Air, Stainless steel, PbZO4 , Cu, Teflon, Circuit boards, …
•  Stainless ={ 12C, 13C, (14C), 54Fe, (55Fe), 57Fe,58Fe, 60Fe,

(50Cr), 52Cr, 53Cr, 54Cr, 55Mn, 58Ni, 60Ni, 61Ni, 62Ni, 64Ni,
28Si, 29Si, 30Si}

•  Previous versions of G4 used “pseudoelements” based
on natural abundances. This was judged in adequate
for the “what happened” calculations.

Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in

initialization).
–  Identify common (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E, ln(E), or log(E)
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free

path (interaction length) calculations.
–  Single query of a G4PhysicsVector

•  When an interaction occurs (rare)
–  Perform original physics calculations

11

Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in

initialization).
–  Identify common (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E, ln(E), or log(E)
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free

path (interaction length) calculations.
–  Single query of a G4PhysicsVector

•  When an interaction occurs (rare)
–  Perform original physics calculations

12

Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in

initialization).
–  Identify common (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E, ln(E), or log(E)
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free

path (interaction length) calculations.
–  Single query of a G4PhysicsVector

•  When an interaction occurs (rare)
–  Perform original physics calculations

13

Building the Surrogate Model

14

Over	
 sample	
 the	
 exis=ng	
 code.	

Douglas-Peucker Approximation.

15

Start	
 with	
 a	
 piecewise-­‐linear	
 approxima=on.	

In	
 each	
 segment,	
 Add	
 the	
 point	
 at	
 the	
 largest	
 error.	

Un=l	
 total	
 error	
 is	
 within	
 the	
 required	
 bound.	

Douglas-Peucker Approximation.

16

Start	
 with	
 a	
 piecewise-­‐linear	
 approxima=on.	

In	
 each	
 segment,	
 Add	
 the	
 point	
 at	
 the	
 largest	
 error.	

Un=l	
 total	
 error	
 is	
 within	
 the	
 required	
 bound.	

Douglas-Peucker Approximation.

17

Start	
 with	
 a	
 piecewise-­‐linear	
 approxima=on.	

In	
 each	
 segment,	
 Add	
 the	
 point	
 at	
 the	
 largest	
 error.	

Un=l	
 total	
 error	
 is	
 within	
 the	
 required	
 bound.	

Adjust	
 Y	
 values	
 in	
 final	

phase	
 to	
 unbias	
 errors.	

Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in

initialization).
–  Identify common (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E, ln(E), or log(E)
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free

path (interaction length) calculations.
–  Single query of a G4PhysicsVector

•  When an interaction occurs (rare)
–  Perform original physics calculations

18

G4double G4CrossSectionDataStore::GetCrossSection(part,mat){
 ...
 if(mat == currentMaterial && part->GetDefinition() == matParticle
 && part->GetKineticEnergy() == matKinEnergy)
 { return matCrossSection; }

 //Calculate CrossSection the regular way (including xsecelm)
 ...
}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){
 ...

G4double cross = GetCrossSection(part, mat);
 ...
}
	

Existing CrossSection Calculation

G4double G4CrossSectionDataStore::GetCrossSection(part,mat,requireSlowPath){
 ...
 if(!requireSlowPath){
 fast_entry = (*fastPathMap)[searchkey];
 }
 if (!requireSlowPath && fast_entry != NULL){
 matCrossSection=GetCrossSectonFastPath(fast_entry,part);
 } else {
 //Calculate CrossSection the regular way (including xsecelm)
 }
 ...
}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){
 ...

G4double cross = GetCrossSection(part, mat, true);
 ...
}
	

Modified CrossSection Calculation

Fast Path Usage: Runtime
Triples	
 Samples	
 Tolerance	
 	
 Time	
 Percent	
 Diff	

90%	
 250K	
 1E-­‐05	
 82:36	
 8.0%	

90%	
 10K	
 1E-­‐06	
 85:26	
 6.1%	

90%	
 500K	
 1E-­‐05	
 87:07	
 5.1%	

90%	
 200K	
 1E-­‐06	
 89:03	
 3.8%	

Slow	
 Path	
 Only	
 N/A	
 N/A	
 94:57	
 0.0%	

90%	
 2M	
 1E-­‐06	
 99:18	
 -­‐2.8%	

Fast Path Usage: Cycles
Samples	
 Tol	
 	
 Cyc/Op	

(fast)	

Cyc/Op	

(slow)	

Cyc/Op	

(avg)	

Init	

Cycles	

Cyc/Op	

(avg)	
 	

w/	
 init	

Total	
 Calls	

2M	
 1E-­‐6	
 274	
 3982	
 839	
 2.77E+12	
 2731	
 1,468,837,903	

1M	
 1E-­‐6	
 252	
 3936	
 811	
 1.24E+12	
 1651	
 1,475,681,237	

500K	
 1E-­‐5	
 240	
 3873	
 786	
 2.58E+11	
 962	
 1,467,516,422	

250K	
 1E-­‐5	
 230	
 3981	
 801	
 1.23E+11	
 884	
 1,486,080,112	

10K	
 1E-­‐6	
 242	
 3882	
 820	
 6.17E+9	
 824	
 1,520,218,543	

Questions?

